Магистр подготовки учителей общеобразовательных дисциплин в младших и средних школах - математика

Общая информация

Описание программы

Цель исследования - дать выпускникам полное магистерское образование, которое подготовит их к профессии учителя математики в младших и старших классах средней школы всех типов. Исследование основано на балансе когнитивной, дидактической и педагогически-психологической частей педагогического образования. Акцент делается на использовании дидактических инноваций в преподавании математики с учетом современных дидактических концепций. Выпускники будут подготовлены к построению школьных образовательных программ с упором на интеграцию различных областей математики (арифметика, алгебра, геометрия, статистика, финансовая математика и т. Д.) И различных образовательных областей. Выпускники приобретут достаточное количество знаний и навыков для дифференцированной работы с учениками, талантливыми в математике.


Смотрите план обучения на http://studium.pedf.cuni.cz/karolinka/


Описание критериев проверки и оценки

  1. Устный экзамен. Максимальное количество баллов - 30 (2 вопроса по 15 баллов в каждом).
    Устный экзамен состоит из решения проблем и теоретической части.
    Претендента просят принести список законченных математических курсов с краткими учебными планами из предыдущего университетского обучения.
  2. Устный экзамен - оценка общей осведомленности абитуриентов о педагогике и психологии и их мотивации к изучению выбранных предметов - максимальная оценка 30 баллов.

Общая оценка - максимум 60 баллов.


Математика

темы:

Основы математики (математическая логика, множества); позиционные системы, тесты делимости, диофантовы уравнения, евклидов алгоритм, конгруэнция; линейная алгебра (матрицы, определители, системы линейных уравнений, векторные пространства, линейные отображения); реляционные структуры (порядок, эквивалентность); полиномы (алгебраические и функциональные определения полиномов, делимость, алгебраические и численные решения уравнений); векторы, формы в E2, E3, E4 и их отношения заболеваемости, изучаемые с помощью векторов; системы координат, основа; алгебраические структуры (группа, поле, кольцо, гомоморфизм, изоморфизм); геометрические преобразования синтетическим и аналитическим способами в E2: конгруэнции на плоскости (комбинация, классификация, группа конгруэнций); аналогичные преобразования в плоскости (классификация, группа сходств); гомотетия (теорема Монжа, теорема Менелая); аффинные преобразования в A2 (классификация, синтетические и аналитические описания, группа аффинных преобразований); инверсия круга, проблемы Апполония; коники (аффинные и метрические свойства); элементарные функции; исчисление (непрерывность, предел и производная - определение, свойства, вычисление; свойства функций, непрерывных на отрезке; теорема о среднем значении; максимум и минимум; свойства функции и построение ее графа); интегралы (примитивная функция и определенный интеграл - определение, свойства, вычисление; использование в геометрии, неправильный интеграл); дифференциальные уравнения (простые уравнения с независимыми переменными, линейные дифференциальные уравнения первого порядка; линейные дифференциальные уравнения второго порядка с постоянными переменными - общее решение и решение с начальным условием); числовые последовательности и ряды (числовые последовательности - свойства, предел последовательности и ее вычисление; числовые ряды - свойства, критерии сходимости рядов с неотрицательными членами, чередующиеся ряды, абсолютная и не абсолютная сходимость).


Педагогика и психология

Устный экзамен - оценка общей осведомленности абитуриентов о педагогике и психологии и их мотивации к изучению выбранных предметов - максимальная оценка 30 баллов.


Условия приема

Прием в магистратуру обусловлен завершенным средним образованием, подтвержденным аттестатом об окончании школы. Зачисление в аспирантуру (магистерскую программу) также обусловлено завершением обучения по любому типу учебной программы.

Метод проверки:


Рекомендуемая литература, примеры вопросов

Учебники для вузов по темам, указанным выше. Например:

Коксетер, HSM Введение в геометрию. Джон Вили


Карьерный проспект

Выпускник оснащен знаниями и навыками, необходимыми для профессии полностью квалифицированного учителя математики в младших и старших классах средней школы всех типов. Имеет солидное математическое, дидактическое и педагогическо-психологическое образование. Он / она может творчески применять современные методы обучения и формы работы. Он / она может определить учеников с талантом и особыми потребностями и предоставить им качественное образование по математике и квалифицированную помощь. Он / она может работать вне школьной системы, в средствах массовой информации и учреждениях, нацеленных на образование. Он / она обладает знаниями и навыками, необходимыми для дальнейшего обучения в докторантуре математического образования.

Последнее обновление: Март 2020

О вузе

The Faculty of Education is one of seventeen faculties associated under the umbrella of the Charles University in Prague. Its primary goal is to train teachers and other pedagogical personnel for all ... Подробнее

The Faculty of Education is one of seventeen faculties associated under the umbrella of the Charles University in Prague. Its primary goal is to train teachers and other pedagogical personnel for all types of schools and school systems, at various levels of study (Bachelors and Masters) and forms. Свернуть

Часто задаваемые вопросы